If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=2x=30
We move all terms to the left:
x^2-(2x)=0
a = 1; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*1}=\frac{4}{2} =2 $
| X²+17=18x | | (x^2-4x+3)(x^2-4x-4)=18 | | 12-4y=2y+9 | | 4x-30=-4x+30 | | x^2+11x+90=0 | | 65-2x=9=9x | | 1/x=1000/250 | | 10(s-9)=-159 | | 10(s-9)=-59 | | -(h-3)=5 | | 5(g+1)=-20 | | 10x-+2=6x-8 | | 5(2a+8)=150 | | X³-3x²-2x=210 | | 5a-3=25 | | (a-3)*8=48 | | (a-9)*6=30 | | 19+6x=11-7x | | 6x-15=16x-105 | | 3/3p-5-2/4p-7=6/7(4p-7)+7/9(3p-5) | | 2z/9-7=4 | | 2z-7=4 | | z/8-9=z | | 7*s-16=61 | | 3n+20=14 | | 1,9-0,7m=-3,7 | | 6a+12=1+87 | | -3x-33/6=-4 | | 14+4z=-21 | | 4y+11=21+3y | | 11a5a=51 | | 2m-2+3m-3=4+2m |